Determination of the flow resistivity and thickness of porous materials with rigid frames via transmitted waves at Darcy’s regime
نویسندگان
چکیده
An acoustic method is proposed for measuring the flow resistivity and the thickness of air-saturated porous materials. The conventional methods [14, 16, 17] for the measurement of the flow resistivity (or the viscous permeability) require the prior knowledge of the porosity. The method presented in this work is based on a temporal model of the direct problem in which a simplified expression (independent of frequency and porosity) of the transmission coefficient at the Darcy’s regime (low frequency range) is established, this expression depends only on the viscous permeability (or the flow resistivity) and the thickness of a porous sample. The inverse problem is solved based on the leastsquare numerical method using experimental transmitted wave in time domain. Tests are performed using two samples of different thicknesses to same industrial plastic foam, thereby enabling the determination the thickness and flow resistivity of foam plastic. This method has the advantage of being simple, fast and efficient.
منابع مشابه
Measuring static viscous permeability of porous absorbing materials.
Conventional acoustical methods for measuring the permeability or flow resistivity of a porous material require a priori estimation of the porosity. In this work, an acoustical method is presented in which a simplified expression (independent of both the frequency and porosity) for the transmitted waves at the Darcy's regime (low frequency range) is derived, and used for the inverse determinati...
متن کاملMicro-structure Modelling of Acoustics of Open Porous Materials
Transportation is a large and growing part of the world’s energy consumption. This drives a need for reduced weight of rail vehicles, just as it does for road vehicles. In spite of weight reductions, the vehicle still has to provide the same level of acoustic comfort for the passengers. Porous materials, with more than 90% air, are often included in multi-layer vehicle panels, contributing to a...
متن کاملThe Effect of Dynamic Permeability on Velocity and Intrinsic Attenuation of Compressional Waves in Sand
Stress waves contain useful information about the properties of porous materials; they can be recovered through different non-destructive testing methods such as crosswell, vertical seismic profile, borehole logging as well as sonic tests. In all these methods, it is crucial to assess the effects of frequency on wave attributes including velocity and intrinsic attenuation. The dependency of per...
متن کاملHeat Transfer Analysis of Nanofluid Flow with Porous Medium through Jeffery Hamel Diverging/Converging Channel
In this paper, flow and heat transfer of nanofluid through a converging or diverging channel with porous medium is investigated. The fluid constantly flows under the effect of magnetic field through the channel. The diverging/converging fluid motion is modeled using the momentum and energy equations. The influence of some parameters such as opening channel angle, Reynolds number and Darcy’s num...
متن کاملParametric Study on Wave Interaction with a Porous Submerged Rubble Mound Breakwater Using Modified N-S Equations and Cut-Cell Method
In this paper wave transformation in a submerged sloped breakwater and its hydraulic performance was simulated by developing a numerical model in Fortran. The code was established by combining porous flow and a two-phase model using VOF method. Modified Navier-Stokes and k-ε equations implemented to the model to simulate the flow in porous media. Cut cell method was modified to simulate...
متن کامل